Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and cilia interactions.
نویسندگان
چکیده
This paper presents a simple and reasonable method for generating a phenomenological model of the internal mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and fit to a simple functional form called the "engine." This engine is incorporated into a recently developed hydrodynamic model that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia. We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due to hydrodynamic interactions between neighboring cilia.
منابع مشابه
Effect of Cilia Beat Frequency on Muco-ciliary Clearance
Background: The airway surface liquid (ASL), which is a ï‚uid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs.Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a New...
متن کاملA finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کاملCiliary activity and the origin of metachrony in Paramecium: effects of increased viscosity.
The small dimensions of ciliary movement make viscosity of the medium a key factor in the hydrodynamic interaction of cilia. Because technical difficulties are encountered in direct observations of ciliary systems, little is known concerning the mechanisms by which the fluid medium actually influences the beat of cilia and metachronism. Gosselin (1958) observed in lateral cilia of mussel gills ...
متن کاملEffect of Cilia Beat Frequency on Muco-ciliary Clearance
BACKGROUND The airway surface liquid (ASL), which is a fluid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs. OBJECTIVE Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a Newt...
متن کاملEvidence for two extremes of ciliary motor response in a single swimming microorganism.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 74 4 شماره
صفحات -
تاریخ انتشار 1998